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Abstract

We study the foundation and limitations of the statistical reaction theory. In par-
ticular, we focus our attention to the question of whether the rate constant can
be defined for nonergodic systems. Based on the analysis of the Arnold web in the
reactant well, we show that the survival probability exhibits two types of behavior:
one where it depends on the residential time as the power-law decay and the other
where it decays exponentially. The power-law decay casts a doubt on definability of
the rate constant for nonergodic systems. We indicate that existence of the two types
of behavior comes from sub-diffusive motions in regions where the Arnold web is
sparse. Moreover, based on the analysis of nonstationary features of the trajectories,
we can understand how the NHIM is connected with the Arnold web. We propose
that the following two features play a key role in understanding the reactions where
ergodicity is broken, i.e, whether the Arnold web is sparse and nonuniform or not,
and how the NHIM is connected with the Arnold web.
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1 Introduction

Reaction processes are ubiquitous from microscopic phenomena such as nu-
clear and chemical reactions to macroscopic ones such as population dynamics.
In the study of reaction processes, the rate equation of the type

d

dt
P (t) = −kP (t), (1)

is frequently used in the phenomenological treatment, where the rate constant

k is supposed to describe how the density P (t) of the reactant changes. Then,
P (t) obeys the exponential decay, and the inverse of the rate constant gives
the characteristic time scale of the processes.

As for the foundation of the rate equation, we usually presuppose that the
reaction processes take place statistically. In particular, for reaction processes
in microscopic phenomena, the Rice-Ramsperger-Kessel-Marcus (RRKM) for-
mula is employed to estimate the rate constant k. In deriving the RRKM for-
mula, we need the following two assumptions; (1) The no-recrossing boundary
exists between the reactant and the product, and we call it the transition
state (TS). (2) The processes within the reactant well are ergodic so that the
trajectories lose their memories of initial conditions when they exit from the
well [1].

Suppose that we are given a distribution of initial conditions within the re-
actant well. Then, the first assumption means that the reaction rate can be
estimated by simply counting the number of trajectories which cross the TS
from the reactant to the product. The second assumption implies that the
reaction rate thus estimated does not depend on the distribution of initial
conditions within the well. In order for the second assumption to hold, the
characteristic time scale for the system to react must be much longer than
that to explore the phase space within the well. Then, starting from any dis-
tribution, it will spread into the whole region of the phase space within the
well, before some of the trajectories go over the TS. Thus, the rate becomes
independent of how we choose the distribution of initial conditions.

However, recent studies on reaction processes cast a doubt on the assumptions
underlying the statistical reaction theory[2]. There are two problems on the
assumptions; (1) whether we can have a mathematically sound definition of
TSs, and (2) what if the processes within the well are not ergodic enough to
guarantee the existence of the rate constant.

As for the first question, it is solved by the approach based on the geometric
structures in the phase space called normally hyperbolic invariant manifolds
(NHIMs). By applying the Lie canonical perturbation theory (LCPT)[3,4] to
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the potential saddles of the index one, we can identify the geometric structures
inherent to the saddle region, at least in the energy regime close to the energy
of the saddle point [5]. This approach produces a large amount of applications
for reaction processes ranging from atomic physics [6], cluster physics [7], to
even celestial mechanics [8].

A NHIM is a manifold where the absolute values of the Lyapunov exponents
along its normal directions are much larger than those along its tangential
directions[9–11]. Its stable/unstable manifolds consist of those orbits which
asymptotically approach or leave the NHIM, respectively. For saddles of the
index one, these geometric structures enable us to identify the one-dimensional
reaction coordinate as the normal direction to the NHIM, and thereby to define
the TS as the the dividing hypersurface of co-dimension one locally near the
saddle. The TS thus defined is free from the problem of recrossing orbits,
and can decompose the phase space into the distinct regions of the reactants
and the products [6,12–14] ( See also the recent reviews[8,15–17] and the
book[18].). Moreover, the stable/unstable manifolds of the NHIM provide us
with the reaction conduit through which all the reactive trajectories pass from
the reactant to the product or vice versa. Thus, these manifolds offer a crucial
clue to understand controllability of the reaction.

On the other hand, the study on the foundation and limitations of the er-
godicity assumption has been started. In particular, new approaches which do
not rely on the ergodicity assumption have appeared recently. For example,
a formula is found where the volume of phase space which contributes to the
reaction is represented by the phase space average of the residential time, i.e.,
the duration for which each trajectory stays in the well [19]. Contrary to the
RRKM formula, this one does not need the assumption of ergodicity. Then,
the phase space average of the residential times in general depends on the
distributions of initial conditions, leading to dependence of reaction rates on
their choice. Moreover, the power-law decay of the survival probability P (t) is
found experimentally [20]. Recently, we have also obtained numerical results
of classical mechanics showing that isomarization processes in HCN exhibit
the power-law decay of the survival probability [21]. These results lead us to
the following question; To what extent can we define the rate constant ?

This question is closely related to the problem of whether the transport coef-
ficient can be defined by the linear response theory, when the system exhibits
the long time tail [22–24]. In other words, when ergodicity is not satisfied,
we face this problem. The long time tail is found in numerical simulations
of Hamiltonian systems [25,26], water clusters [27], and ferro-magnetic spin
systems [28]. Moreover, recent experiments show that proteins do exhibit long
time memory [29]. Thus, the question of whether the rate constant can be
defined or not has a far reaching importance in general.
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Fig. 1. Schematic pictures showing how NHIMs are connected by their stable and
unstable manifolds. (a) Their stable and unstable manifolds have direct intersections
without going deeply in the reactant well. (b) They land on the Arnold web in the
well, where the web is sparse. (c) They land on the Arnold web in the well, where
the web is dense.

In order to answer it, we need to understand the dynamical processes taking
place in the reactant well, and see how their characteristics manifest them-
selves in the behavior of macroscopic quantities such as the reaction rate. We
propose the following three scenarios concerning how the trajectories in the
reaction conduit of the unstable manifold spend time in the well. One is to
have direct intersection with the conduit of the stable manifold of the same (
or another ) NHIM. Then, the trajectories in the conduit stay in the well for
a shorter time scale and exit. The others are to land on the Arnold web, i.e.,
the network of nonlinear resonances in the well [4]. Then, those trajectories
wander around the Arnold web before they leave the well. Therefore, the time
scale to exit the well is longer than the previous case. When the Arnold web
is sparse, we will see nonergodic reaction processes. On the other hand, when
the web is dense, we expect that statistical features will dominate the reaction
processes. In the former case, the residential times of the trajectories vary de-
pending on the initial conditions. Thus, in the analysis of reaction processes
where ergodicity is broken, the distribution of the residential times is of our
interest.

These scenarios are displayed by schematic pictures in Fig. 1, where the hills
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indicate the potential barriers and the rectangles on the top of the hills show
the NHIMs around the saddles. Their stable and unstable manifolds are shown
by the arrows, respectively. In Fig. 1 (a), the stable and unstable manifolds
have intersections without going deeply into the well. On the other hand,
in Fig. 1 (b) and (c), they land on the Arnold web in the well. While, in
Fig. 1 (b), the Arnold web is sparse, the web is dense in Fig. 1 (c). These
characteristics of the web will manifest themselves in the distribution of the
residential times, thereby leading to the difference in the statistical features
of the reaction processes.

Thus, the dynamics in the Arnold web is crucial in judging the validity and
limitations of the statistical reaction theory. However, there exist few studies
concerning how the characteristic of the Arnold web affects the reaction pro-
cesses [30]. In particular, those features of the Arnold web such as whether
nonlinear resonances are dense or sparse, and whether they exist uniformly
or not will be crucial for ergodicity of the processes in the well. Moreover,
whether trajectories spend their times in those regions where nonlinear res-
onances are dense or not will affect their residential times in the well. Thus,
characteristics of the Arnold web will play an important role in the problem
of whether the rate constant can be defined.

In this paper, we study, using a simple model Hamiltonian, how characteris-
tics of the Arnold web affect reaction processes. In particular, we focus our
attention to the survival probability of trajectories within the reactant well.
Thus, we shed light on how the reaction rate behaves for reaction processes
where ergodicity is broken. The following is the content of this paper. In the
section 2, we introduce our model Hamiltonian. In the section 3, the results of
our study are discussed. In the section 4, the conclusions and future problems
are discussed.

2 Model Hamiltonian

We consider a system of three degrees of freedom with a double-well potential.
The system is regarded as a prototype of isomarization reactions. The model
Hamiltonian is the following,

H =H0 + H1, (2)

H0 =
p2

1

2
−

λ2q2
1

2
+ bq4

1 +
3
∑

i=2

(

p2
i

2
+

ω2
i q

2
i

2
+ bq4

i

)

,

H1 =exp
[

−(q1 − 1)2/σ2
] [

a1q
2

2q
2

3 + a2(q1 − 1)2(q2

2 + q2

3)
]

,
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where q1 is the reaction coordinate, and qi (i = 2, 3) are the bath coordinates.
The parameters are ω1 = 1.02, ω2 = 0.94, ω3 = 1.04, a1 = 0.1, a2 = 0.9 and
b = 0.5, where ω1 = λ/

√

2 is the unperturbed frequency at the bottom of the
well q1 = 1.

The unperturbed Hamiltonian of the bath coordinates hi =
p2

i

2
+

ω2

i
q2

i

2
+ bq4

i

(i = 2, 3) are nonlinear oscillators, respectively. They are integrable with the
following constants of motion,

Ji(hi)=
1

2π

∮

dqipi(qi)

=
A

3k2

[

(2k2

i − 1)E(ki) + (1 − k2

i )K(ki)
]

, (3)

where we use the notations k2
i =

α2

i

α2

i
+β2

i

, α2
i =

−ω2

i
+

√
ω4

i
+16bhi

4b
, β2

i =
ω2

i
+

√
ω4

i
+16bh

4b

and Ai =
2α2

i

π

√

2b(α2
i + β2

i ). Here, the elliptic functions are defined as E(k) =
∫ π/2

0 dφ
√

1 − k2 sin2 φ and K(k) =
∫ π/2

0 dφ 1
√

1−k2 sin2 φ
.

Expanding the Hamiltonian (2) by LCPT at the bottom of the well, we obtain
the nonlinear frequencies for the bath coordinates, up to the first order of the
action variables, as follows

ω̄i(Ji) =
∂H0

∂Ji
= ωi +

3b

ω2
i

Ji + O(J2

i ), (i = 2, 3), (4)

where we use the action variables Eq.(3). The reaction coordinate has the
action variable in the well as follows

J1(h1) =

√

2λ

3π
(α1 + β1) [E(k1) − α1β1K(k1)] , (5)

where the unperturbed Hamiltonian of the reaction coordinate is expressed as

h1 =
p2

1

2
−

λ2q2

1

2
+ bq4

1 for the range −
λ2

4
< h1 < 0. Here, we use the notations

α1 =

√

1 −

√

1 + 4h1

λ2 , β1 =

√

1 +
√

1 + 4h1

λ2 and k1 = β1−α1

β1+α1

. The nonlinear

frequency of the reaction coordinate in the well is given, up to the first order
of the action variable (5), by

ω̄1 =
∂H0

∂J1

= ω1 −
3

4
J1 + O(J2

1 ). (6)

Then, we can show that the system has the primary resonances given by

ω̄1 = ω̄2, ω̄1 = ω̄3, ω̄2 = ω̄3. (7)

We will see that the Arnold web of the primary resonances is sparse. On the
other hand, there exist regions where multiple resonances meet, i.e., resonance
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Fig. 2. Survival probability P (n) as a function of the crossing number n is shown.
(a) Log vs. log plot. The line indicates fitting with the function n−γ . (b) Log vs.
linear plot. The line indicates fitting with the function exp(−αn).

junctions. Thus, the Arnold web has nonuniform features. These features will
play an important role in the following results.

3 Results

In the following calculations, we choose initial conditions with their energy
E = 0.225. Note that the potential energy at the saddle is E = 0.125. They
leave the saddle to the reactant well, with all of the excess energy δE = 0.1
distributed randomly among the bath degrees of freedom. This distribution
means that the initial conditions lie on the unstable manifold of the NHIM
which exists around the saddle in phase space.

In order to estimate how long these trajectories stay in the well, we have
calculated the residential time for each of the trajectories by counting the total
number n of crossing points with the plane q1 = 1 under the condition p1 > 0,
until it leaves the well. We call n the crossing number. By adding the number of
trajectories with their crossing numbers from n to their maximum, we obtain
the number of trajectories which remain in the well up to the crossing number
n. The ratio of this quantity to the total number of the trajectories gives the
survival probability P (n).

In Fig.2, we show the survival probability P (n) as a function of the crossing
number n. There, two ranges of n exist where P (n) behaves differently. One is
the range where P (n) varies as the power-law decay n−γ , and the other where
P (n) changes exponentially as exp(−αn). The range of the power-law decay
extends from about n = 10 up to about n = 100 with γ = 0.82, and that of the
exponential decay does from about n = 100 up to about n = 5000 with α =
0.0015. Moreover, the Fourier spectra of the action variables correspondingly
exhibit different characteristics [31]. For trajectories in the range of the power-
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Fig. 3. The average locations of trajectories in the action space are plotted for initial
conditions which are in the range of power-law (gray dots), and those in the range
of exponential (black dots).

law decay, the Fourier spectrum exhibits 1/f dependence. On the other hand,
it shows the Lorentzian feature for those in the range of the exponential decay.
Based on the above results, we construct two ensembles of trajectories, one
composed of the trajectories in the range where P (n) shows the power-law
decay, and the other composed of those in the range where P (n) does the
exponential decay.

From now on, we investigate the relation between those features of P (n) and
the characteristics of the Arnold web. In Fig.3, we plot the average location of
the trajectory in the action space (J2, J3, J1) for each initial condition. The lo-
cation is estimated when the trajectory crosses the plane q1=1, and the average
is taken over its residential time. The figure reveals how the variance of P (n)
relate with the processes of energy exchange between the bath modes and the
reaction coordinate. The gray (black) points are shown for those trajectories in
the range where P (n) changes as the power-law decay (exponentially). There,
we also indicate the locations of the primary resonances for comparison.

First, we see in Fig.3 that the Arnold web of the primary resonances is sparse.
Moreover, there exist resonance junctions. These features indicate that the
Arnold web is nonuniform. Comparing these features with the distribution of
the locations, we note the following. The gray points distribute only within
a limited region. This suggests that there exist dynamical structures which
prevent the trajectories from exploring the whole phase space. In particular,
most of the points do not lie near the the primary resonances. This implies
that the trajectories do not experience fully chaotic regions. On the other
hand, the black points distribute in the resonance-overlap regions and around
the resonance junctions, where multiple resonances meet. This means that the
trajectories wander round fully chaotic regions.

In Fig.4, we draw the distance from the resonance line in the action space.
The distance is calculated each time the trajectory crosses the place q1 = 1,
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Fig. 4. The ensemble averages of the distances from the two resonance lines are
shown as functions of the crossing number n with double logarithmic plot. The solid
line (dashed line) indicates the distance from the resonance line with the condition
ω̄1 = ω̄2 (ω̄1 = ω̄3).

and its values are averaged over time until the trajectory exits the well. The
average is further taken over the trajectories with the crossing number n.
Thus, we obtain the distance as a function of the crossing number. There,
we show the average distance d1 from the resonance ω̄1 = ω̄2, and the one d2

from the resonance ω̄1 = ω̄3, respectively. Note that both of the resonances
involve the reaction coordinate, thereby contributing to the processes when it
loses ( or obtains ) its energy. There, we see that the distances decrease as the
crossing number n increases. This means that the trajectories stay longer, as
they wander around more deeply in the web, Moreover, for those with larger
crossing numbers, both of the distances have smaller values. In particular,
the values of d2 drops around n = 100. This suggests that the trajectories
in the range of the exponential decay migrate into the regions where the two
resonances meet, i.e., the resonance junctions. These two figures indicate that
the two ensembles of trajectories experience different parts of phase space.

These results imply the following. Those trajectories in the range of the power-
law decay experience hierarchical structure of dynamical barriers, and keep a
long time memory. On the other hand, those in the range of the exponential
decay wander around more statistical regions.

Then, the next question is if the landing processes from the saddle to the
Arnold web differ between the two ensembles of trajectories, that is, how
the unstable manifold lands on the Arnold web. There are three cases for
the landing processes. The first is that the unstable manifold lands on the
Arnold web where the resonances are sparse. Then, the trajectories in the
range of the exponential decay of P (n) wander around the web and migrate
into resonance junctions. The second is that the unstable manifold lands on
the Arnold web where the resonances are dense such as resonance junctions.
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Fig. 5. σ1(n1, n0) with n0 = 50, 100, 300, 1000 are plotted for trajectories in
the range of the crossing number n between 2000 and 4000. The powers p of the
growth of σ1(n1, n0) are p = 0.6, 0.7, 0.8, and 1.0 for n0 = 50, 100, 300, and 1000,
respectively.

Then, the trajectories in the range of the power-law decay of P (n) wander
around the web and migrate into the regions where the resonances are sparse.
The last is that the unstable manifold spreads enough to cover both of the
regions. Then, while the trajectories in the range of the power-law decay of
P (n) land on the sparse region, those in the range of the exponential decay
do on the dense region.

In order to investigate which of the above is realized in our system, we study
how the behavior varies for the trajectories in the range of the exponential
decay as they wander around the web. In particular, we focus our attention to
the initial, middle and last stages of their stay to see if their behavior changes
as they experience the web. To find such nonstationary features, we estimate
diffusion in the action scape as follows

σk(n1, n0) =
〈

(Jk(n1, i) − Jk(n0, i))
2
〉

i
(8)

where Jk(n0, i) is the value of the action Jk with k = 1, 2, 3 at the n0th
crossing with the plane q1 = 0. We define Jk(n1, i) in a similar way. Here, the
trajectories are indexed using i, and the average is taken over the trajectories
in the range of the crossing number n between 2000 and 4000. By choosing
both n0 and n1 so that the trajectories are in the initial, middle or last stages
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of their stay, we can estimate how diffusion varies as the trajectories wander
around the web.

In Fig.5, we show σ1(n1, n0) as a function of n1 − n0. These figures indicate
that sub-diffusive behavior appears for the initial stage of their stay. This
is revealed by the fact that σ1(n1, n0) varies as (n1 − n0)

p with p less than
1. As the trajectories proceed in the web, the behavior comes closer to the
normal diffusion. As for the last stage of their stay, the result at present is not
conclusive.

We are also calculating the window Fourier spectrum to see if the above
changes in the diffusion have corresponding features in the spectrum. Cur-
rently, we obtain results that, while the window Fourier spectra show 1/f de-
pendence for the initial and last stages of their stay, they exhibit the Lorentzian
feature in the middle [21].

These results strongly suggest that the trajectories in the range of the expo-
nential decay also land on the regions where the web is sparse. After spending
some time there, they migrate into the regions where the resonances are dense.
When they leave, they migrate again to the regions where the web is sparse,
and exit the well. These trajectories spend most of their times in the dense
regions. Therefore, the dynamics there determine their statistical features.
Based on the above idea, we draw a schematics picture in Fig.6 showing how
the NHIM around the saddle is connected to the Arnold web by the unstable
manifold.
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4 Conclusion and Future Problems

In this paper, we have studied the reaction processes where ergodicity is broken
in the reactant well. In particular, the question of whether the rate constant

can be defined for nonergodic systems is investigated. By the analysis of the
Arnold web in the reactant well, we have shown that the survival probability
exhibits the two kinds of dependence on the residential time, i.e., the power-law
and the exponential decays. The power-law decay casts a doubt on definability
of the rate constant for nonergodic systems. The two kinds of dependence come
from existence of regions in phase space where the sub-diffusive and normal
diffusive motions are seen, respectively.

Analyzing the nonstationary features of the behavior, we suggest that the
unstable manifold of the NHIM lands on the regions where the Arnold web
is sparse. After landing, those trajectories in the power-law decay wander
around the regions where the web is sparse. On the other hand, those in the
exponential decay migrate into the regions where the web is dense. In leaving
the well, they move again to the region where the web is sparse. Thus, we can
understand how the NHIM around the saddle is connected with the Arnold
web.

As for the future study, we raise the following two as urgent problems. First is
to understand the phase space structure which gives rise to dynamical barriers
in systems of more than two degrees of freedom. Second is to undertake similar
analysis as is done in this paper to other systems.

As for the first, one may ask a possible relationship to the hierarchical structure
of resonances. In the analysis of the Arnold web, we have only taken into
account the locations of the primary resonances. For full understanding of the
Arnold web, however, we have to to know whether higher order resonances
remain there, and, if so, we need to estimate their locations. When higher
order resonances remain, hierarchical structure of resonant tori exist there.
However, tori per se do not constitute dynamical barriers in systems of more
than two degrees of freedom. Therefore, their existence does not readily explain
hierarchical structure of dynamical barriers as is revealed here. Thus, it is
a challenging problem to understand the existence of dynamical barriers in
systems of more than two degrees of freedom.

Second, we need to undertake similar analysis to other systems where the
ergodicity assumption is broken. We think that such cases will also exist where
the NHIM is connected to regions where the Arnold web is dense. Then, some
of the trajectories migrate into regions where the web is sparse. For these
cases, we suggest that the survival probability exhibit the exponential decay
for shorter residential times, and the power-law decay for longer ones.
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Thus, we can understand the foundation and limitations of the statistical
reaction theory based on the analysis of the dynamical structures of phase
space. In particular, the following two features play a key role in understanding
the reaction processes, i.e., whether the Arnold web is sparse and nonuniform
or not, and how the reaction conduits of the unstable/stable manifolds land
on the Arnold web.
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